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Abstract

The authors continue their considerations concerning the validity of the steady-state approximation

in non-isothermal kinetics. A sequence of two first-order consecutive reactions with an active inter-

mediate was subjected to kinetic analysis by numerical solution of the corresponding differential ki-

netic equations for a number of particular cases. The results demonstrated that the rate of change of

concentration of the active intermediate is negligibly small if the assumption made in the isothermal

case is also accepted for the non-isothermal case, i.e. k2(T(t))>>k1(T(t)).

Keywords: non-isothermal kinetics, numerical solution of differential kinetic equations,
steady-state approximation

Introduction

In part II, a kinetic analysis under non-isothermal conditions was performed for the

classical sequence of two first-order consecutive reactions [1]:

A B Ck T t k T t1 2( ( )) ( ( )) →  → (1)

where k1(T(t)) and k2(T(t)) are temperature-dependent rate constants. It was shown

that the rate of change of concentration of the intermediate B is negligibly small, i.e.

d[B]/dt≈0, if the following two assumptions are accepted: (i) k2(T(t))>>k1(T(t)) and

(ii) the ratio k1(T(t))/k2(T(t)) has approximately the same value throughout the tem-

perature interval in which the reactions occur [1].

Assumption (i) is ‘common sense’ in chemical kinetics, as it is the essential con-

ditions for high chemical reactivity of intermediate B. Limiting assumption (ii) was

introduced as a mathematical restriction in order to avoid the difficulties in integrat-
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ing the system of differential equations with variable coefficients that describes the

sequence of reactions (1) under non-isothermal conditions.

Since assumption (ii) is too restrictive, in the present paper we investigate the

validity of the steady-state approximation under non-isothermal conditions by taking

only assumption (i) into consideration. For this purpose, in a number of particular

cases, we find the numerical solutions of the system of differential equations that de-

scribe the sequence of reactions (1) under non-isothermal conditions.

Theory

Under non-isothermal conditions, the temperature of the investigated system, T
changes in time according to a functional relationship of the form (2)

T(t)=θ(t) (2)

where θ(t) is a continuous function of time. The most usual case corresponds to a lin-

ear increase in T with t, i.e.

T(t)=To+βt (3)

In the above equation, To is the initial temperature and β is the constant heating rate.

The variations in time of the concentrations of the species A, B and C are given

by three differential equations [1, 3]:

d[A]/dt=–k1(T(t))[A] (4)

d[B]/dt=–k1(T(t))[A]–k2(T(t))[A] (5)

d[C]/dt=–k2(T(t))[B] (6)

where the rate constants k1(T(t)) and k2(T(t)) depend on temperature and, implicitly,

on time. In order to describe the temperature dependence of the rate constants, the

Arrhenius equation is usually used [3], i.e.

Ki(T(t))=Aiexp[–Ei/RT(t)] (i=1, 2] (7)

The factor Ai is called the pre-exponential factor or the frequency factor, while Ei

is called the activation energy.

As the coefficients k1(T(t)) and k2(T(t)) are no longer constants under

non-isothermal conditions, Eqs (4), (5) and (6) represent, in fact, a system of three

linear differential equations with variable coefficients. Unfortunately, this system has

no analytical solution.

This major problem can be bypassed, however, by using, as for the case of iso-

thermal kinetics, the steady-state approximation. According to this, if

k2(T(t))>>k1(T(t)), it may be assumed that the change in rate of the concentration of

intermediate B is negligibly small as compared with the changes in rate of the concen-

trations of reactant A and product C [1, 3]. This may be written as

d[B]/dt≈0 (8)
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In a previous paper [1], we demonstrated that the steady-state approximation

holds as long as k2(T(t))/k1(T(t))>>1 and keeps a quite constant value. In other words,

we showed that, for these two hypotheses, Eq. (8) is obtained.

It must be noted, however, that for isothermal kinetics the same approximation

can be demonstrated without the need for the ratio constancy condition. As a result, it

seems that the demonstration for the case of non-isothermal kinetics demands an ex-

tra restriction. It is the aim of the present work to show, by means of numerical calcu-

lations, that this second restrictive condition is not in fact required, and that the

steady-state approximation validity is based on the same condition for both isother-

mal and non-isothermal kinetics.

When the steady-state approximation is taken into account, the discussion of se-

quence (1) is greatly simplified. Indeed, if condition (8) is used in Eq. (5), and rela-

tionship (2) is taken into account, we obtain

[B]≈[k1(T(t))/k2(T(t))][A] (9)

On substitution of this value of B into Eq. (6), that equation becomes

d[C]/dt≈k1(T(t))[A] (10)

and we see that C is formed by a first-order decay of A, with a rate constant k1(θ(t)),
the rate constant of the slower, rate-determining step [3].

Furthermore, if Eq. (5) is taken into account, Eq. (10) can be rewritten in the form

d[C]/dt≈–d[A]/dt (11)

We presume that initially only A is present, and that its concentration is [A]o. In

this way, integration of Eq. (11) leads to

[A]+[C]≈[A]o (12)

In order to use Eq. (12), [A] should be determined. For this purpose, Eq. (4) can

be integrated, leading to

[A]=[A]oexp[ k T t t1( ( ))d
o

t

∫ ] (13)

On substitution of the solution for [A], i.e. Eq. (13), into Eq. (12), the following

expression for [C] is obtained:

[A]≈[A]o{1–exp[ k T t t1( ( ))d
o

t

∫ ]} (14)

Even though the integral in Eqs (13) and (14) has no exact analytical solution,

several approximations with a high degree of accuracy are to be found in the literature

[4]. In this paper, the third-degree rational approximation is used [4, 5].

It follows from the foregoing that the sequence of reactions (1) can be described

mathematically by more convenient expressions, i.e. Eqs (13) and (14), if the

steady-state approximation, i.e. Eq. (8), is accepted. Since Eq. (8) has been demon-
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strated [1] to hold for the case k2/k1>>1 and it keeps a fairly constant value throughout

the reaction period, it may be stated that sequence (1) can be well described by

Eqs (13) and (14) only if the two conditions relating to k2/k1 are valid. We have al-

ready mentioned that the first condition, k2/k1>>1, always holds for a reactive inter-

mediate, while the condition of ratio constancy may be considered a restriction. We

should now focus our attention on the numerical solution of the system of linear dif-

ferential equations with variable coefficients, i.e. Eqs (4), (5) and (6), in order to

prove that d[B]/dt≈0 requires only the condition k2/k1>>1, without any need for the re-

striction. In other words, Eqs (13) and (14) describe sequence (1) well if B is a reac-

tive intermediate.

From the consideration of particular values for the kinetic parameters, a number of

applications are presented below in order to illustrate the correctness of these assump-

tions.

Application and discussion

As stated in the previous section, Eqs (8) and (14) are approximate expressions whose

accuracy is directly related to the magnitude and constancy of the ratio

k2(T(t))/k1(T(t)). We shall attempt to show that the magnitude of the ratio is a suffi-

cient condition for a steady-state approximation, i.e. it is assumed that the higher the

value of k2(T(t))/k1(T(t)), the better the accuracy of the approximation. This assump-

tion can be checked by taking a number of particular values for the kinetic parameters

(A1, A2, E1 and E2) and finding the numerical solutions of the system of three linear

differential equations corresponding to Eqs (4)–(6). The results obtained in this way

are compared with the results obtained by using the steady-state approximation.

In order to solve the system of differential equations, numerically, and to find

the functions [A], [B] and [C], the function NDSolve of the Mathematica® software

system is employed [6, 7].

Table 1 Values of the kinetic parameters corresponding to six particular cases

Case E1/kJ mol–1 A1/s
–1 E2/kJ mol–1 A2/s

–1 ∆E=E1–E2/kJ mol–1 ∆E=/E1/%

1 160 5·1013 150 5·1013 10 6.25

2 160 5·1013 145 5·1013 15 9.375

3 160 5·1013 140 5·1013 20 12.5

4 240 5·1013 225 5·1013 15 6.25

5 240 5·1013 217.5 5·1013 22.5 9.375

6 240 5·1013 210 5·1013 30 12.5

For applications, we consider that the temperature changes in time according to

Eq. (3), with To=298.15 K and β=10 K min–1 as particular values. As regards the set of

kinetic parameters (A1, A2, E1 and E2), we shall give special emphasis to the six partic-

ular cases presented in Table 1; the initial values [A]o=1 mol l–1 and [B]o=[C]o=0 are

taken for every particular case.
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Equation (7) allows us to write

k2/k1=A2/A1exp[–(E2–E1)/RT] (15)
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Fig. 1 Variation in time of the concentrations of species A, B and C for cases 1, 2 and
3, as found from numerical integration of Eqs (4)–(6), and for comparison the
variation in time of the concentration of C given by the approximate Eq. (14)
1a Case 1, 1b Case 2, 1c Case 3



If equal values are chosen for A1 and A2 (see Table 1), the ratio k2/k1 is related to

the value ∆E=E2–E1.

From Table 1, it can be seen that for all cases we consider A1=A2=5·1013 s–1 and

only the activation energies are changed. For cases 1, 2 and 3, a constant value of

E1=160 kJ mol–1 is considered, while decreasing values of E2 are taken into account.

The results obtained in this way shed light on the influence of increasing ∆E=E1–E2
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Fig. 2 Variation in time of the concentrations of species A, B and C for cases 1, 2 and
3, as found from numerical integration of Eqs (4)–(6), and for comparison the
variation in time of the concentration of C given by the approximate Eq. (14)
2a Case 4, 2b Case 5, 2c Case 6



on the validity of the steady-state approximation. The situation is similar for cases 4,

5 and 6, except that the value of E1 is taken as 240 kJ mol–1.

The results of the numerical simulations are presented graphically. For cases

1–3 and 4–6, respectively, Figs 1 and 2 show the variations in time of the concentra-
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Fig. 3 Variation in time of the rates of change in the concentrations of species A, B and
C, as found from numerical integration of Eqs (4)–(6) for cases 1, 2 and 3
3a Case 1, 3b Case 2, 3c Case 3



tions of species A, B and C as found from the numerical integration of Eqs (4)–(6)

and, for comparison, the concentration of C given by the approximate Eq. (14). In or-

der to illustrate approximation (8), Figs 3 and 4 show the variations in time of the
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Fig. 4 Variation in time of the rates of change in the concentrations of species A, B and
C, as found from numerical integration of Eqs (4)–(6) for cases 4, 5 and 6
4a Case 1, 4b Case 2, 4c Case 3



rates of change in the concentrations of species A, B and C as found from the numeri-

cal integration of Eqs (4)–(6), i.e. the evolution of d[A]/dt, d[B]/dt and d[C]/dt, corre-

sponding to all of the cases listed in Table 1. Additionally, Fig. 5 depicts the variation

in time of k2(T(t))/k1(T(t)) for cases 1–6.

The presented results permit a number of inferences.

1. For a given value of E1, the higher the value of the difference (E1–E2), the higher

the accuracy of approximation (8). For a given value of E1, the higher the value of the dif-

ference (E1–E2), the more precise the description of the variation in time of the concentra-

tion of C given by Eq. (14).

2. The validity of Eqs (8) and (14) seems to be related to the quantity (E1–E2)/E1 and

not to the absolute difference E1–E2 if different values of E1 are considered, i.e. the higher

the value of (E1–E2)/E1, the greater the accuracy of approximations (8) and (14).
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Fig. 5 Variation in time of k2(T(t))/k1(T(t)) for cases 1–6, 5a Cases 1–3, 5b Cases 4–6



3. The higher the quantity (E1–E2)/E1, the higher the ratio of the two kinetic con-

stants k2(T(t))/k1(T(t)). It can therefore be considered that under non-isothermal con-

ditions the steady-state approximation is also valid if the ratio of the kinetic constants

satisfies the condition k2(T(t))/k1(T(t))>>1.

The last two results indicate that, although Eq. (15) suggests that this ratio of the

two constant rates should depend only on ∆E, the accuracy of the steady-state approx-

imation also seems to be related to the ratio ∆E/E1.

Conclusions

The validity of the steady-state approximation under non-isothermal conditions has been

tested by analysing a sequence of two consecutive first-order reactions with an active in-

termediate. It has been shown by numerical simulation that the accuracy of the approxi-

mate Eqs (8) and (14) can be considered satisfactory if the ratio of the two kinetic con-

stants satisfies the condition k2(T(t))/k1(T(t))>>1, this condition being related to the

quantity (E1–E2)/E1 if the pre-exponential factors of the two reactions are equal.

* * *
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